
CNT 4603: Python – Part 2 Page 1 Dr. Mark Llewellyn ©

CNT 4603: System Administration

Spring 2013

Python – Part 2

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

 markl@cs.ucf.edu

 HEC 236, 4078-823-2790

 http://www.cs.ucf.edu/courses/cnt4603spr2013

CNT 4603: Python – Part 2 Page 2 Dr. Mark Llewellyn ©

Regular Expressions In Python

• Regular expressions (regex) are one of the black arts of

practical modern programming. Those who master regular

expressions will find that they can solve many problems

quite easily while those who don’t will waste many hours

pursuing complicated work-arounds.

• Regular expressions, although complicated, are not really

difficult to understand. Fundamentally, they are a way to

describe patterns of text using a single set of strings.

• Unlike a simple search-and-replace operations, such as

changing all instances of “Marty” to “Mark”, regex

allow for much more flexibility – for example, finding all

occurrences of the letters “Mar” followed by either “ty”

or “k”, and so on.

CNT 4603: Python – Part 2 Page 3 Dr. Mark Llewellyn ©

Regular Expressions In Python

• Regular expressions were initially described in the 1950s by

a mathematician named S.C. Kleene, who formalized models

that were first designed by Warren McCulloch and Walter

Pitts to describe the human nervous system.

• Regex were not actually applied to computer science until

Ken Thompson (one of the original designers of the Unix

OS) used then as a means to search and replace text in his

qed editor.

• Regex eventually made their way into the Unix operating

system (and later into the POSIX standard) and into Perl as

well, where they are considered one of the language’s

strongest features.

CNT 4603: Python – Part 2 Page 4 Dr. Mark Llewellyn ©

Regular Expressions In Python

• Python supports the Perl5 standard of regular expressions.

• The Perl version is known as PCRE (Perl-Compatible

Regular Expressions).

• PCRE are much more powerful than their POSIX

counterparts – and consequently more complex and difficult

to use.

CNT 4603: Python – Part 2 Page 5 Dr. Mark Llewellyn ©

Regular Expressions In Python

• Regex is, essentially, a whole new language, with its own

rules, own structures, and its own quirks. What you know

about other programming languages has little or no bearing

on regex, for the simple reason that regular expression are

highly specialized and follow their own rules.

Regular Expression Axioms as defined by S. C. Kleene

• A single character is a regular expression denoting itself.

• A sequence of regular expressions is a regular expression.

• Any regular expression followed by a * character (known as the “Kleene Star”) is a

 regular expression composed of zero or more instances of that regular expression.

• Any pair of regular expressions separated by a pipe character (|) is a regular

 expression composed of either the left or the right regular expression.

• Parentheses can be used to group regular expressions.

CNT 4603: Python – Part 2 Page 6 Dr. Mark Llewellyn ©

Regular Expressions In Python

• While Kleene’s definition of what makes a regular expression

might, at first, seem confusing, the basics are actually pretty

easy to understand.

• First, the simplest regular expression is a single character. For

example, the regex a would match the character “a” in the

word “Mark”.

• Next, single character regex can be grouped by placing them

next to each other. Thus the regex Mark would match the

word “Mark” in “Your instructor is Mark for CNT 4603.”

• So far, regex are not very different from normal search

operations. However, this is where their similarities end.

CNT 4603: Python – Part 2 Page 7 Dr. Mark Llewellyn ©

Regular Expressions In Python
• The Kleene Star can be used to create regex that can be

repeated any number of times (including none).

• Consider the following string:

 seeking the treasures of the sea

• The regex se* will be interpreted as “the letter s followed by

zero or more instances of the letter e” and will match the

following:

– The letters “see” of the work “seeking”, where the regex e is repeated

twice.

– Both instances of the letter s in “treasures”, where s is followed by

zero instances of e.

– The letters “se” of the work “sea”, where the e is present once.

CNT 4603: Python – Part 2 Page 8 Dr. Mark Llewellyn ©

Regular Expressions In Python

• It’s important to understand in the regex se* that only the

expression e is considered with dealing with the star.

• Although its possible to use parentheses to group regular

expressions, you should not be tempted to think that using

(se)* is a good idea, because the regex compiler will

interpret it as meaning “zero or more occurrences of se”.

• If you apply this regex to the same string, you will encounter a

total of 32 matches, because every character in the string

would match the expression. (Remember? 0 or more

occurrences!)

CNT 4603: Python – Part 2 Page 9 Dr. Mark Llewellyn ©

Regular Expressions In Python
• You’ll find parentheses are often used in conjunction with the

pipe operator to specify alternative regex specifications.

• For example, the regex gr(u|a)b with the string: “grab the

grub and pull” would match both “grub” and “grab”.

• Although regular expressions are quite powerful because of the

original rules, inherent limitations make their use impractical.

• For example, there is no regular expression that can be used to

specify the concept of “any character”.

• As a result of the inherent limitations, the practical

implementations of regex have grown to include a number of

other rules, the most common of which are shown beginning on

the next page.

CNT 4603: Python – Part 2 Page 10 Dr. Mark Llewellyn ©

Additional Syntax For Regex

• The special character “^” is used to identify the beginning of the

string.

• The special character “$” is used to identify the end of the

string.

• The special character “.” is used to identify any character.

• Any nonnumeric character following the character “\” is

interpreted literally (instead of being interpreted according to its

regex meaning).

CNT 4603: Python – Part 2 Page 11 Dr. Mark Llewellyn ©

Additional Syntax For Regex

• Any regular expression followed by a “+” character is a regular

expression composed of one or more instances of that regular expression.

• Any regular expression followed by a “?” character is a regular

expression composed of either zero or one instance of that regular

expression.

• Any regular expression followed by an expression of the type {min [, |,

max]} is a regular expression composed of a variable number of

instances of that regular expression. The min parameter indicates the

minimum acceptable number of instances, whereas the max parameter, if

present, indicates the maximum acceptable number of instances. If only

the comma is present, no upper limit exists. If only min is defined, it

indicates the only acceptable number of instances.

• Square brackets can be used to identify groups of characters acceptable

for a given character position.

CNT 4603: Python – Part 2 Page 12 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• It’s sometimes useful to be able to recognize whether a portion

of a regular expression should appear at the beginning or the end

of a string.

• For example, suppose you’re trying to determine whether a

string represents a valid HTTP URL. The regex http://

would match both http://www.cs.ucf.edu, which is valid and

nhttp://www.cs.ucf.edu which is not valid, and could easily

represent a typo on the user’s part.

• Using the special character “^”, you can indicate that the

following regular expression should only be matched at the

beginning of the string. Thus, ^http:// will match only the

first of our two strings.

CNT 4603: Python – Part 2 Page 13 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• The same concept – although in reverse – applies to the end-of-

string marker “$, which indicates that the regular expression

preceding it must end exactly at the end of the string.

• Thus, com$ will match “amazon.com” but not

“communication”.

• Having a “wildcard” that can be used to match any character is

extremely useful in a wide range of scenarios, particularly

considering that the “.” character is considered a regular

expression in its own right, so that it can be combined with the

Kleene Start and any of the other modifiers.

CNT 4603: Python – Part 2 Page 14 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• Consider the regex: .+@.+\..+

• This regex can be used to indicate:

– At least one instance of any character, followed by

– The @ character, followed by

– At least one instance of any character, followed by

– The “.” character, followed by

– At least one instance of any character

• Can you guess what sort of string this regex might validate?

Does this look familiar? markl@cs.ucf.edu

It’s a very rough form of an email address. Notice how the backslash character was used to

force the regex compiler to interpret the next to last “.” as a literal character, rather than as

another instance of the “any character” regular expression.

CNT 4603: Python – Part 2 Page 15 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• The regex on the previous page is a fairly crude way of

checking the validity of an email address. After all, only letters

of the alphabet, the underscore character, the minus character,

and digits are allowed in the name, domain, and extension of an

email.

• This is where the range denominators come into play. As

mentioned previously (last paragraph of page 12), anything

within non-escaped square brackets represents a set of

alternatives for a particular character position. For example, the

regex [abc] indicated either an “a”, a “b”, or a “c” character.

However, representing something like “any character” by

including every possible symbol in the square brackets would

give rise to some ridiculously long regular expressions.

CNT 4603: Python – Part 2 Page 16 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• Fortunately, range denominators make it possible to specify a

“range” of characters by separating them with a dash.

• For example [a-z] means “any lowercase character.

• You can also specify more than one range and combine them

with individual characters by placing them side-by-side.

• For example, our email validation regex could be satisfied by

the expression [A-Za-z0-9_].

• Using this new tool our full email validation expression

becomes:

 [A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]+

CNT 4603: Python – Part 2 Page 17 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• The range specifications that we have seen so far are all

inclusive – that is, they tell the regex compiler which characters

can be in the string. Sometimes, its more convenient to use

exclusive specification, dictating that any character except the

characters you specify are valid.

• This is done by prepending a caret character (^) to the character

specifications inside the square bracket.

• For example, [^A-Z] means any character except any

uppercase letter of the alphabet.

CNT 4603: Python – Part 2 Page 18 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• Going back to our email example, its still not as good as it could

be because we know for sure that a domain extension must have

a minimum of two characters and a maximum of four.

• We can further modify our regex by using the minimum-

maximum length specifier introduced on page 12.

 [A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{2,4}

• Naturally, you might want to allow only email addresses that

have a three-letter domain. This can be accomplished by

omitting the comma and the max parameter from the length

specifier, as in:

 [A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{3}

CNT 4603: Python – Part 2 Page 19 Dr. Mark Llewellyn ©

Some Basic Regex Usage

• On the other hand, you might want to leave the maximum

number of characters open in anticipation of the fact that longer

domain extensions might be introduced in the future, so you

could use the regex:

 [A-Za-z0-9_]+@[A-Za-z0-9_]+\.[A-Za-z0-9_]{3,}

• Which indicates that the last regex in the expression should be

repeated at least a minimum of three times, with no fixed upper

limit.

CNT 4603: Python – Part 2 Page 20 Dr. Mark Llewellyn ©

A Practice Exercise

• See if you can create a regex that will validate a string

representing a date in the format mm/dd/yyyy. In other

words, 04/16/2012 would be matched but 4/16/12 would not.

• Step 1: form a basic regex. A regex such as .+ (one or more

characters) is a bit too vague even as a starting point. So how

about something like this?

 [[0-9]]{2}/[[0-9]]{2}/[[0-9]]{4}

• This will work and validate 04/16/2012. However, it will also

validate 99/99/2012 which is not a valid date, so we still need

some refinement.

CNT 4603: Python – Part 2 Page 21 Dr. Mark Llewellyn ©

A Practice Exercise (continued)

• For the month component of our regex, the first digit must

always be either a 0 or a 1, but the second digit can be any of 0

through 9.

• Similarly, for the day component of the regex, the first digit can

only be 0, 1, 2, or 3.

• Our final regex now becomes:

 [0-1][[0-9]]/[0-3][[0-9]]/[[0-9]]{4}

• This will work and validate 04/16/2012.

CNT 4603: Python – Part 2 Page 22 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Perl-Compatible Regular Expressions (PCRE) are much more

powerful than their basic regex (or POSIX) counterparts. This

of course makes them more complex and difficult to use as well,

but well worth the effort for Python programmers/scripters.

• PCRE adds its own character classes to extend regular

expressions.

• There are nine of these character classes in PCRE and are shown

in the table on the next page.

CNT 4603: Python – Part 2 Page 23 Dr. Mark Llewellyn ©

Character

class

Description

\w Represents a “word” character and is equivalent to the expression [A-Za-z0-9]

\W Represents the opposite of \w and is equivalent to the expression [^A-Za-z0-9]

\s Represents a whitespace character

\S Represents a non-whitespace character

\d Represents a digit and is equivalent to the expression [0-9]

\D Represents a non-digit (the opposite of \w) and is equivalent to the expression [^0-9]

\n Represents a new line character

\r Represents a return character

\t Represents a tab character

PCRE character classes

Perl-Compatible Regular Expressions (PCRE)

CNT 4603: Python – Part 2 Page 24 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Using PCRE formatted regex allows for significantly more

concise regex than is possible for the POSIX formatted regex.

• Consider, for example, the email address validation expression

we developed in POSIX earlier:

 [[0-9A-Za-z]_]+@[[0-9A-Za-z]_]+\.[[0-9A-Za-z]_]{2,4}

• Using the new character classes of PCRE this expression

becomes:

 /\w+@\w+\.\w{2,4}/

Notice that the regex string now begins and ends with forward slashes. PCRE requires

that the actual regular expression be delimited by two characters. By convention, two

forward slashes are used, although any character other than the backslash that is not

alphanumeric would work just as well.

Note in the example script on page 26 I added

another \.\w{2,4} term so that I could easily pickup

the sub-domain used in my email address.

CNT 4603: Python – Part 2 Page 25 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Regular expressions are supported in Python through the re

module.

• There are a lot of functions in this module, but the primary

function for regular expressions is match(). This function has

the following syntax:

 match(pattern, string, flags=0)

• The match() function attempts to match the regular

expression pattern to string with optional flags;

returns a match object on success, None on failure.

• An example illustrating this function is shown on the next page.

CNT 4603: Python – Part 2 Page 26 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 2 Page 27 Dr. Mark Llewellyn ©

Perl-Compatible Regular Expressions (PCRE)

• Some of the more common Python functions that are part of the

re module are shown below:

search(pattern, string, flags=0) – searches for the first occurrence of

pattern within string. Returns match object on success, None on failure.

findall(pattern, string [, flags]) – looks for all (non-overlapping)

occurrences of pattern in string and returns a list of matches, possibly empty if

none are found.

finditer(pattern, string [, flags]) – same as findall() except returns

an iterator instead of a list; for each match, the iterator returns a match object.

split(pattern, string, max=0) – splits string into a list according to the

pattern delimiter and returns a list of successful matches, splitting at most max

times (split all is the default).

sub(pattern, replace, string, max=0) – replaces all occurrences of

pattern in string with replace, substituting all occurrences unless max is

provided.

CNT 4603: Python – Part 2 Page 28 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 2 Page 29 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 2 Page 30 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 2 Page 31 Dr. Mark Llewellyn ©

CNT 4603: Python – Part 2 Page 32 Dr. Mark Llewellyn ©

Practice Problems

• See if you can generate regular expressions to recognize the

following strings:

1. To recognize the any of the words: “bat”, “bit”, “but”, “hat”, “hit”, or

“hut”

2. Any pair of words separated by a space or a colon. Example:

“alpha:beta”

3. Any floating point number represented by any number of digits followed

optionally by a single decimal point and zero or more digits. Examples:

45.6, 0.004, 75

4. Any day of the week, e.g. “Monday”

• The solutions appear on the next two pages…try these problems

yourself BEFORE you look at the solutions.

CNT 4603: Python – Part 2 Page 33 Dr. Mark Llewellyn ©

Practice Problems - Solutions

1. To recognize the any of the words: “bat”, “bit”, “but”, “hat”,

“hit”, or “hut”

 (bat | bit | but | hat | hit | hut) //not very

elegant!

 [bh][aiu]t

 (b|h)(a|i|u)t

2. Any pair of words separated by a space or a colon. Example:

“alpha:beta”

 \w+(:|\s)\w

CNT 4603: Python – Part 2 Page 34 Dr. Mark Llewellyn ©

Practice Problems - Solutions

3. Any floating point number represented by any number of digits

followed optionally by a single decimal point and zero or more

digits. Examples: 45.6, 0.004, 75

 [0-9]+(\.[0-9]*)?

 \d+(\.\d*)?

4. Any day of the week

 (Mon | Tues | Wed | Thurs | Fri | Satur | Sun)day

